
Strategies for Designing and Building Reusable
Software Components

Sampath Korra#1, Dr S.Viswanadha Raju*2, Dr A.Vinaya Babu #3

#1Dept. of CSE, JNTUK, AP, India

#2JNTUCEJ Jagtial, Karimnagar, AP, India
#3JNTUH Hyderabad, India

Abstract:This paper presents time proven methods and
strategies for creating, managing, and accessing a library of
reusable software components and also software engineering
strategies for designing and building reusable components with
proper planning and execution, these methodologies will bring
significant cost saving. In addition, cost-benefit guidelines are
developed to help an organization decide when the benefits
involved in implementing reusable coding procedures outweigh
the implementation overhead. Specific recommendations are
made for code documentation practices, software design, and
management procedures that encourage and result in successful
code reuse practices. This paper will address how to deal with
specific application data dependencies and software engineering
components for portability across different data models.
Keywords: reuse, component, quality, design requirements,
repository.

1. INTRODUCTION:
A component is the fundamental user interface object in Java.
Everything you see on the display in a Java application is a
component. To be used, a component usually must be placed
in a container. Container objects group components, arrange
them for display using a layout manager, and associate them
with a particular display device. The Component Based
Development (CBD) approach brings high component
reusability and easy maintainability, and reduces time-to-
market. Therefore it improves productivity of software
systems and lower development cost in the context of
reusable software components. Component-Based
Development (CBD) approach develops software systems by
assembling preexisting components under well-defined
architecture or framework [1]. The CBD approach brings
high component reusability and easy maintainability, and
reduces time-to-market. Therefore it improves productivity
of software systems and lower development cost [2].
What is Software Component Reuse?
 Software component reuse is the software engineering
practice of creating new software applications from existing
components, rather than designing and building them from
scratch. Reusable components can be requirements
specifications, design documents, source code, user
interfaces, user documentation, or any other items associated
with software. All products resulting from the software
development life cycle have the potential for reuse[3].
Advantages of Software Component Reuse
Reusable components are easier to maintain (over time) and
typically have a higher quality value (more robust and fewer

errors). The business case is reduced application
development time, reduced application cost, and improved
application quality[4]. software component reuse is one or
several of the following:

o To reduce time
o To reduce effort
o To save cost
o To improve quality

2 .OBSTACLES TO SOFTWARE REUSE

Frequent architecture and system changes.
Organizational and cultural issues, reuse requires a fairly drastic
change.
Lack of automation tools to assist with specific reuse mechanisms.
Higher up-front investments.
Organization size and amount of application development performed
will be proportional to payback. Smaller organizations will not
benefit as much from code reuse.
Too large of a project or effort is often attempted initially.
Experience has shown that it requires three to five years to
implement a formal reuse program across a large corporation.
Initially, the end-to-end software life cycle will be longer.
Lack of component indexing and searching mechanisms.

Characteristics Needed for Qualification as a Reusable
Component
In order for a component (specification, design, code) to be
reusable, it needs to have certain qualities that contribute to
its reusability [5]. General with build-in
adaptability/specialization
Widely applicable
Modular/self-contained
Complete and consistent
Machine independent
Implementation/application independent
Data model independent
Reliable
Robust (good error/exception handling built in)
Understandable/well documented
Adaptable/extensible
Standardized
Portable (across hardware and operating systems)
Certified/testable
Maintainable
Encapsulated (details are isolated and hidden from user)

Sampath Korra et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (5) , 2013, 655-659

www.ijcsit.com 655

Guidelines for Creating a Reusable Component
We also provided the software industry with techniques for
building reusable components independent of whether or not
an object-oriented language is available[6]. The techniques
for creating components most applicable to reuse, are as
follows:

1. Generalize
2. Standardize
3. Automate
4. Certify
5. Document

Generalization
Generalization is the practice of identifying and
designing/building for common uses of a component and
removal of special case processing or differences required by
various uses of the component. When reused, the generalized
component offers a common service to many uses. The reuser
of the component is responsible for adding any custom
services or specializations back into the component for the
particular use[7]. Techniques identified to assist in
generalization of a component include the following:
Use parameters or parameter lists for invoking the component.
The specializations will provide unique parameter values to
determine or cause different behaviours.
The component could be built in two different languages. The
use, function signature, behaviour, etc., may be exactly the
same for both implementations, but the internal
implementation of the component may be entirely different
depending on the language used [8].
Separate the behaviour of the component from the
application-specific use, business rules, logic, and procedures.
Represent the component at a higher level of abstraction.
Develop a clear description of the component without using
application-specific details. Practice information hiding and
encapsulation [9].
Describe components by requirements that are the same
regardless of the use or application and describe them by
requirements that will differ from application to application
[10].
Design two parts to each component: (1) the fixed part, and
(2) the variable part. A reuser of the component should only
need to change the variable part. The more implementation
that can be placed in the fixed part, the more reusable the
component becomes.
Standardization
Standardization is the practice of developing and following a
uniform approach to defining and building each component.
GUI interfaces, help systems, coding styles, uniform
structured programming techniques, naming conventions for
variables and functions, avoiding use of global variables,
decomposition into modules that are completely independent,
information hiding concepts, and module cohesion need to be
defined and enforced. The higher the level of standardization,
the easier it will be for component developers and users to
find and assemble applicable components for system
solutions. A typical standardization checklist is presented
below that has been derived from several of the referenced

authors, which may be utilized in a formal technical review
of an application development assignment.[11]
Avoid literal constants, excessive levels of inheritance, and
excessive use of complex logical constructs. Maximize
cohesion; all operations in a component are closely related.
Minimize coupling; reduce connectivity and dependencies on
other components (e.g., avoid use of global variables). Proper
use of information hiding - If developed correctly, another
developer should not need to know what happens inside the
component. For example, inputs, outputs, the behaviour of
the component, and results are all the next software engineer
should ever need to know about the component in a reuse
scenario [12].
 Automation of Components
Automation refers to having a CASE tool generate some
piece of an application, such as a design document or actual
code. If the developer can plug in some unique characteristics
of a particular requirement, such as a data model, and have
another tool automatically generate a component, there are
large opportunities for reuse savings.
The software component is the better one of the design
decisions in component engineering is how much
functionality will be exactly the same in all use scenarios. If a
large chunk of functionality can be placed in a single
component, then reuse cost savings are maximized. The
tendency when designing for reuse is to break the system
down to very small, very simplified tasks and assign
components to each. If it can be discovered that for every
implementation, a large group of tasks can be combined into
a single component that will service each implementation
equally without specialization, then this represents a
tremendous reuse advantage [13].
Certification of Quality
Reuse requires some blind faith on the part of the reuser that
the component being used will be as suitable and reliable as
documented [14]. It would not take more than a couple of bad
experiences in using other components for an entire software
team to lose faith in the reusability of a library of components
and reuse in general. In order for a reuse initiative to succeed,
it is critically important for an independent quality
certification process. The following checklist of certification
items are recommended for each module inserted into a
library

 Testing
 Inspection
 Complexity Measurement
 Automated syntax check
 Standards compliance
 Performs according to design and documentation
 Component has no external data dependencies
 Platform portability (e.g., test an AML component on

both NT and UNIX platforms)
 Is the component actually used in multiple systems
 Reuse statistics
 Internal code review/walk-through
 Unit, as well as integration, testing has been performed

Sampath Korra et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (5) , 2013, 655-659

www.ijcsit.com 656

In the simplest applications, each component corresponds to
an HTML page, and no two applications share components
[15]. However, one of the strengths of the WebObjects
architecture is its support of reusable components:
components that, once defined, can be used within multiple
applications, multiple pages of the same application, or even
multiple sections of the same page[16].
This section describes reusable components and shows you
how to take advantage of them in your applications. It begins
by illustrating the benefits of reusable components. It then
describes how to design components for reuse, how reusable
components can communicate with the parent component,
and how state is synchronized between parent and child
components. Finally, it provides some design tips for you to
consider when designing your own reusable components [17].
 Creating Reuse Documentation
The importance of documentation in reuse is critical. A
potential reuser needs accurate information about a
component in order to align the component with a
requirement [18]. A quick checklist of what should be
documented is presented below:

 Name of the component
 Classification/categorization of the component
 Interface requirements
 Description of what the component does
 Description of the components properties
 Reuse specific information (e.g., history of reuse,

limitations and conditions for use, how it should be
used, systems it is implemented in)

 Specification of the component
 Quality/certification
 Author and creation data
 Tests developed for the component (e.g., test plan,

use cases, data, results)
 Who maintains the component
 Recommendations for improvements
 Links to requirement specifications
 Version and language implementation data
 Relationships to other components

Strategies for Designing and Building Reusable
Components
Listed below are several practical guidelines and advice to
assist developers in the creation of new reusable components:

 Collaborate with multiple software engineers
throughout the design and definition phases.

 Install a reuse analysis stage into all detailed design
work, so that the opportunities for reuse can be
effectively assessed.

 Strive for a clearly defined, single purpose per
component.

 Document all component interface requirements,
also known as parameter lists or function signatures,
in the design phase. Do not attempt to start at the
coding phase and "design as you go." Remember
that component reuse requires much more up-front

planning. More design time and less construction
time should be expected and planned for by project
managers.

 With the inputs, results, or outputs and a description
of a component, another software developer should
be able to use that component without ever knowing
what the code does inside the component. The
component should pass this "self test."

 Strive for loosely coupled and highly cohesive
components.

 Develop components with overall future use in mind,
not just a single project.

 Always put extra effort into error handling and
making components robust.

 Develop a certification program and communicate
the certification criteria to all component developers.

 Use consistent design styles.

Component Repositories
A reuse library or component repository organizes, stores,
and manages reusable components, often supporting multiple
versions of the components .The primary requirement is
assigning and dedicating a staff resource to tend to and
manage the repository[19,20]. A secondary requirement is
allowance for developer access to the library in a manner that
makes searching for and finding components an easy task.
McClure recommends that several tasks be performed in the
creation of a repository, including most of the following [21]:

 Define the types of components for storage in the
repository.

 Define the organization structure for the reuse
repository.

Select a good configuration management tool [e.g., Clear
Case (excellent commercial system) or Concurrent
Versioning System (excellent shareware)]. Implement as
much automation as the market will provide, such as
cataloging tools and repository browsers. (This is one area of
software engineering tools that is somewhat limited now, but
will experience explosive growth this year)[22].
Define a classification scheme for indexing each component.
The scheme should allow for change and growth over time.
Examples of indexing fields and a list of contents or values
that might be used for each are as follows [23]:
Classification, cataloging, and certification needs to be
performed for every component placed into the repository. A
defined growth path and plan should be adopted for needed
components. As more and more application development is
performed on a given architecture, the projects should be
burdened with populating the repository where and when
needed. A corporate repository should be treated as any other
valuable asset in the corporation. It will need to be managed,
budgeted for, and upgraded, and its status and contents need
to be communicated often to users of the asset. Implement a
repository browser and search engine. Development and
implementation of Web-based tools may be the best approach
for browsing and searching [24].

Sampath Korra et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (5) , 2013, 655-659

www.ijcsit.com 657

3. STRATEGIES FOR IMPLEMENTING SOFTWARE REUSE

PRACTICES IN AN ORGANIZATION

What are the Costs Associated with Software Reuse
Practices?
 Implementing and following reuse practices does not come
without a price tag. Sometimes substantially more effort is
required to build for reuse[25]. For example, to create a
generic reusable form of a program module can take twice as
long as creating it for one time use...and to create a general
object class may require 10 times the effort to create the class
for use in one application. Additional design and planning
efforts will be required initially [26].

What are the Most Common Organizational Failures
when Transitioning to Reuse?

 Rapidly changing underlying technology
 Expectation of an early high payoff
 Not selecting a narrow domain as a starting point
 Focusing on developing components for deliverables

of a single project, instead of multiple projects

 What are the Most Common Technical Failures when
Transitioning to Reuse?
 Inadequate configuration and version management control
mechanisms

 Inadequate searching/browsing/look-up mechanisms
 Too little control over what is put in a library
 Undocumented interfaces and/or components
 No facility for exceptions; all or nothing reuse
 All requirements cannot be satisfied all of the time
 Neither top-down nor bottom-up design is adequate

to capture the benefits of reuse

4. CONCLUSION AND FUTURE WORK
As above mentioned, CBSE can be a fundamental technology
for software development so that it requires to re-think
various aspects of software development. Besides technical
issues, non technical issues such as commerce of components
and management issues are also important [27]. As the
software component vendors have been growing,
a software component market is emerging. Since software
can be distributed over the Internet, web-based software
component brokers have emerged.

1) CBSE requires a new process that is component
acquisition

2) The workload for testing is drastically reduced.
Besides these cases, a number of component-based software
developments have been conducted. Current component
technologies have been used to implement different software
systems, such as object oriented distributed component
software and Web based enterprise application [28].

REFERENCES
[1]Coleman, Derek, Arnold, Patrick, Bodoff, Stephanie, Dollin, Chris,

Gilchrist, Helena, Hayes, Fiona, and Jeremaed, Paul, Object-Oriented
Development: The Fusion Method, Prentice Hall, Englewood Cliffs, NJ,
1994

[2]Coulange, Bernard, Software Reuse, Springer -Verlag, London Limited
1998

[3]Jacobson, Ivar, Object-Oriented Software Engineering: A Use Case
Driven Approach, Addison Wesley, Reading, MA, 1992

[4]McClure, Carma, Software Reuse Techniques, Adding Reuse to the
Systems Development Process, Prentice Hall, Upper Saddle River, NJ,
1997.

[5]Meyer, B., Object-Oriented Software Construction, Prentice-Hall,
Englewood Cliffs, NJ, 1988.

[6]Reifer, Donald J., Practical Software Reuse, John Wiley & Sons Inc.,

New York, New York, 1997
[7]Sametinger, Dr. Johannes, Software Engineering with Reusable

Components, Springer - Verlag, Heidelberg, Berlin, 1997
Center for Computer Systems Engineering Information Clearinghouse

(CFCSE-IC)

[8] Jihyun Lee, Jinsam Kim, and Gyu-Sang Shin “Facilitating Reuse of

Software Components using Repository Technology” Proceedings of
the Tenth Asia-Pacific Software Engineering Conference (APSEC’03).

[9] M. Aoyoma, “New Age of Software Development: How Component-
Based Software Engineering Changes the Way of Software
Development?,” in Proceedings of the 1998 International Workshop on
CBSE,.

[10] B.Jalender, Dr A.Govardhan and Dr P.Premchand. Article: Breaking the
Boundaries for Software Component Reuse Technology. International
Journal of Computer Applications 13(6):37–41, January 2011.
Published by Foundation of Computer Science.

[11] Cai, M.R. Lyu, K. Wong, “Component-Based Software Engineering:
Technologies, Development Frameworks, and Quality Assurance
Schemes,” in Proceedings of the 7th APSEC, 2000

[12] Hafedh Mili, Fatma Mili, and Ali Mili “Reusing Software: Issues and
Research Directions” IEEE Trancastions on software engineering, VOL
21, NO. 6, JUNE 1995

[13] D'Alessandro, M. Iachini, P.L. Martelli, A The generic reusable
component: an approach to reuse hierarchicalOO designs appears in:
software reusability,1993

[14] B.Jalender, Dr A.Govardhan, Dr P.Premchand “A Pragmatic Approach
To Software Reuse”, 3 vol 14 No 2 Journal of Theoretical and Applied
Information Technology (JATIT) JUNE 2010 pp 87-96.

[15] Article “Considerations to Take When Writing Reusable Software
Components”

Consider size of organization.
Consider investment required.
Acquire tools required to support the transition.
Plan, implement, and analyse incremental efforts to adopt
reuse.
Implement a reuse incentive system. Incentives may take
the form of monetary rewards or recognition and reward
programs. The incentive should draw positive attention to
reuse and promote its implementation.
Develop reuse metrics to determine where you are in
implementing your plan and to give yourself a way to
determine when changes are required to your strategy.
Treat technology transition as a project: manage it,
resource it, schedule it, and measure progress.
Select and conduct a small pilot reuse project.
Implementation of change.
Set expectations, conduct training, and keep everyone up to
date on what goes into a reuse repository.
Communicate the results of your initiatives to your internal
development and management teams, as well as to your
clients or customers, letting them know how you are
improving the value of your products.

Sampath Korra et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (5) , 2013, 655-659

www.ijcsit.com 658

[16]. R.G. Lanergan and C.A. Grasso, “Software Engineering with Reusable
Designs and Code,” IEEE Transactions on Software Engineering, vol.
SE-10, no. 5, September 1984, pp. 498-501

[17] T.J. Biggerstaff and A.J. Perlis, eds.,” Software Reusability: Concepts
and Models” ACM Press, New York, vol. 1, 1989.

[18] B.Jalender, Dr A.Govardhan, Dr P.Premchand, Dr C.Kiranmai,
G.Suresh Reddy” Drag and Drop:Influences on the Design of Reusable
Software Components” International Journal on Computer Science and
Engineering Vol. 02, No. 07, pp. 2386-2393 July 2010.

[19] B.Jalender, N.Gowtham, K.Praveenkumar, K.Murahari,
K.sampath”Technical Impediments to Software Reuse” International
Journal of Engineering Science and Technology (IJEST) , Vol. 2(11),p.
6136-6139.Nov 2010.

[20] W.A. Hegazy, The Requirements of Testing a Class of Reusable
Software Modules, Ph.D. dissertation,Department of Computer and
Information Science, The Ohio State University, Columbus, OH, June
1989.

[21] B.Jalender, Reddy, P.N. “Design of Reusable Components using Drag
and Drop Mechanism” IEEE Transactions on Information Reuse and

Integration. IEEE International Conference IRI Sept. 2006 Pages:345 –
350.

[22] B.H. Liskov and S.N. Zilles, “Specification Techniques for Data
Abstractions,” IEEE Transactions on Software Engineering, vol. SE-1,
no. 1, March 1975, pp. 7-19.

 [23] Douglas Eugene Harms “The Influence of Software Reuse on
Programming Language Design” The Ohio State University 1990.

[24] Article “assess reuse risks and costs
“www.goldpractice.thedacs.com/practices/arrc/”.

[25] M. Pat Schuler, “Increasing productivity through Total Reuse
Management (TRM),” Proceedings of Technology2001: The Second
National Technology Transfer Conference and Exposition, Volume
2,Washington DC, December 1991, pp. 294-300.

[26] Constance Palmer, “A CAMP update,” AIAA-89-3144, Proceedings of
Computers in Aerospace 7,Monterey CA, Oct. 3-5, 1989

[27] Pamela Samuelson, “Is copyright law steering the right course?,” IEEE
Software, September 1988, pp.78-86.

[28] Cai, M.R. Lyu, K. Wong, “Component-Based Software Engineering:
Technologies, Development Frameworks, and Quality Assurance
Schemes,” in Proceedings of the 7th APSEC, 2000

Sampath Korra et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (5) , 2013, 655-659

www.ijcsit.com 659

